Systematic identification of splice variants in human P/Q-type channel alpha1(2.1) subunits: implications for current density and Ca2+-dependent inactivation.

نویسندگان

  • Tuck Wah Soong
  • Carla D DeMaria
  • Rebecca S Alvania
  • Larry S Zweifel
  • Mui Cheng Liang
  • Scott Mittman
  • William S Agnew
  • David T Yue
چکیده

P/Q-type (Ca(v)2.1) calcium channels support a host of Ca2+-driven neuronal functions in the mammalian brain. Alternative splicing of the main alpha1A (alpha1(2.1)) subunit of these channels may thereby represent a rich strategy for tuning the functional profile of diverse neurobiological processes. Here, we applied a recently developed "transcript-scanning" method for systematic determination of splice variant transcripts of the human alpha1(2.1) gene. This screen identified seven loci of variation, which together have never been fully defined in humans. Genomic sequence analysis clarified the splicing mechanisms underlying the observed variation. Electrophysiological characterization and a novel analytical paradigm, termed strength-current analysis, revealed that one focus of variation, involving combinatorial inclusion and exclusion of exons 43 and 44, exerted a primary effect on current amplitude and a corollary effect on Ca2+-dependent channel inactivation. These findings significantly expand the anticipated scope of functional diversity produced by splice variation of P/Q-type channels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ca(V)2.1 P/Q-type calcium channel alternative splicing affects the functional impact of familial hemiplegic migraine mutations: implications for calcium channelopathies.

Alternative splicing is known to generate multiple functionally distinct calcium channel variants that exhibit unique spatial and temporal expression patterns. In humans, naturally occurring mutations in genes encoding calcium channel pore forming alpha(1)-subunits are associated with several severe hereditary disorders although it remains to be described whether there exists any relationship b...

متن کامل

Differential regulation of endogenous N- and P/Q-type Ca2+ channel inactivation by Ca2+/calmodulin impacts on their ability to support exocytosis in chromaffin cells.

P/Q-type (Ca(V)2.1) and N-type (Ca(V)2.2) Ca2+ channels are critical to stimulus-secretion coupling in the nervous system; feedback regulation of these channels by Ca2+ is therefore predicted to profoundly influence neurotransmission. Here we report divergent regulation of Ca2+-dependent inactivation (CDI) of native N- and P/Q-type Ca2+ channels by calmodulin (CaM) in adult chromaffin cells. Ro...

متن کامل

Voltage and calcium use the same molecular determinants to inactivate calcium channels.

During sustained depolarization, voltage-gated Ca2+ channels progressively undergo a transition to a nonconducting, inactivated state, preventing Ca2+ overload of the cell. This transition can be triggered either by the membrane potential (voltage-dependent inactivation) or by the consecutive entry of Ca2+ (Ca2+-dependent inactivation), depending on the type of Ca2+ channel. These two types of ...

متن کامل

Regulation of Kv4.3 current by KChIP2 splice variants: a component of native cardiac I(to)?

BACKGROUND The transient outward potassium current (I(to)) encoded by the Kv4 family of potassium channels is important in the repolarization of cardiac myocytes. KChIPs are a recently identified group of Ca2+-binding accessory subunits that modulate Kv4-encoded currents. KChIP2 is the only family member expressed in the heart. METHODS AND RESULTS We previously cloned 2 novel splice variants ...

متن کامل

Properties of Q-type calcium channels in neostriatal and cortical neurons are correlated with beta subunit expression.

In brain neurons, P- and Q-type Ca(2+) channels both appear to include a class A alpha1 subunit. In spite of this similarity, these channels differ pharmacologically and biophysically, particularly in inactivation kinetics. The molecular basis for this difference is unclear. In heterologous systems, alternative splicing and ancillary beta subunits have been shown to alter biophysical properties...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 22 23  شماره 

صفحات  -

تاریخ انتشار 2002